home *** CD-ROM | disk | FTP | other *** search
- /*
-
- SUNRISET.C - computes Sun rise/set times, start/end of twilight, and
- the length of the day at any date and latitude
-
- Written as DAYLEN.C, 1989-08-16
-
- Modified to SUNRISET.C, 1992-12-01
-
- (c) Paul Schlyter, 1989, 1992
-
- Released to the public domain by Paul Schlyter, December 1992
-
- */
-
-
- #include <stdio.h>
- #include <math.h>
-
-
- /* A macro to compute the number of days elapsed since 2000 Jan 0.0 */
- /* (which is equal to 1999 Dec 31, 0h UT) */
-
- #define days_since_2000_Jan_0(y,m,d) \
- (367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
-
- /* Some conversion factors between radians and degrees */
-
- #ifndef PI
- #define PI 3.1415926535897932384
- #endif
-
- #define RADEG ( 180.0 / PI )
- #define DEGRAD ( PI / 180.0 )
-
- /* The trigonometric functions in degrees */
-
- #define sind(x) sin((x)*DEGRAD)
- #define cosd(x) cos((x)*DEGRAD)
- #define tand(x) tan((x)*DEGRAD)
-
- #define atand(x) (RADEG*atan(x))
- #define asind(x) (RADEG*asin(x))
- #define acosd(x) (RADEG*acos(x))
- #define atan2d(y,x) (RADEG*atan2(y,x))
-
-
- /* Following are some macros around the "workhorse" function __daylen__ */
- /* They mainly fill in the desired values for the reference altitude */
- /* below the horizon, and also selects whether this altitude should */
- /* refer to the Sun's center or its upper limb. */
-
-
- /* This macro computes the length of the day, from sunrise to sunset. */
- /* Sunrise/set is considered to occur when the Sun's upper limb is */
- /* 35 arc minutes below the horizon (this accounts for the refraction */
- /* of the Earth's atmosphere). */
- #define day_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -35.0/60.0, 1 )
-
- /* This macro computes the length of the day, including civil twilight. */
- /* Civil twilight starts/ends when the Sun's center is 6 degrees below */
- /* the horizon. */
- #define day_civil_twilight_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -6.0, 0 )
-
- /* This macro computes the length of the day, incl. nautical twilight. */
- /* Nautical twilight starts/ends when the Sun's center is 12 degrees */
- /* below the horizon. */
- #define day_nautical_twilight_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -12.0, 0 )
-
- /* This macro computes the length of the day, incl. astronomical twilight. */
- /* Astronomical twilight starts/ends when the Sun's center is 18 degrees */
- /* below the horizon. */
- #define day_astronomical_twilight_length(year,month,day,lon,lat) \
- __daylen__( year, month, day, lon, lat, -18.0, 0 )
-
-
- /* This macro computes times for sunrise/sunset. */
- /* Sunrise/set is considered to occur when the Sun's upper limb is */
- /* 35 arc minutes below the horizon (this accounts for the refraction */
- /* of the Earth's atmosphere). */
- #define sun_rise_set(year,month,day,lon,lat,rise,set) \
- __sunriset__( year, month, day, lon, lat, -35.0/60.0, 1, rise, set )
-
- /* This macro computes the start and end times of civil twilight. */
- /* Civil twilight starts/ends when the Sun's center is 6 degrees below */
- /* the horizon. */
- #define civil_twilight(year,month,day,lon,lat,start,end) \
- __sunriset__( year, month, day, lon, lat, -6.0, 0, start, end )
-
- /* This macro computes the start and end times of nautical twilight. */
- /* Nautical twilight starts/ends when the Sun's center is 12 degrees */
- /* below the horizon. */
- #define nautical_twilight(year,month,day,lon,lat,start,end) \
- __sunriset__( year, month, day, lon, lat, -12.0, 0, start, end )
-
- /* This macro computes the start and end times of astronomical twilight. */
- /* Astronomical twilight starts/ends when the Sun's center is 18 degrees */
- /* below the horizon. */
- #define astronomical_twilight(year,month,day,lon,lat,start,end) \
- __sunriset__( year, month, day, lon, lat, -18.0, 0, start, end )
-
-
- /* Function prototypes */
-
- double __daylen__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb );
-
- int __sunriset__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb, double *rise, double *set );
-
- void sunpos( double d, double *lon, double *r );
-
- void sun_RA_dec( double d, double *RA, double *dec, double *r );
-
- double revolution( double x );
-
- double rev180( double x );
-
- double GMST0( double d );
-
-
-
- /* A small test program */
-
- main()
- {
- int year,month,day;
- double lon, lat;
- double daylen, civlen, nautlen, astrlen;
- double rise, set, civ_start, civ_end, naut_start, naut_end,
- astr_start, astr_end;
- int rs, civ, naut, astr;
-
- printf( "Longitude (+ is east) and latitude (+ is north) : " );
- scanf( "%lf %lf", &lon, &lat );
-
- for(;;)
- {
- printf( "Input date ( yyyy mm dd ) (ctrl-C exits): " );
- scanf( "%d %d %d", &year, &month, &day );
-
- daylen = day_length(year,month,day,lon,lat);
- civlen = day_civil_twilight_length(year,month,day,lon,lat);
- nautlen = day_nautical_twilight_length(year,month,day,lon,lat);
- astrlen = day_astronomical_twilight_length(year,month,day,
- lon,lat);
-
- printf( "Day length: %5.2f hours\n", daylen );
- printf( "With civil twilight %5.2f hours\n", civlen );
- printf( "With nautical twilight %5.2f hours\n", nautlen );
- printf( "With astronomical twilight %5.2f hours\n", astrlen );
- printf( "Length of twilight: civil %5.2f hours\n",
- (civlen-daylen)/2.0);
- printf( " nautical %5.2f hours\n",
- (nautlen-daylen)/2.0);
- printf( " astronomical %5.2f hours\n",
- (astrlen-daylen)/2.0);
-
- rs = sun_rise_set ( year, month, day, lon, lat,
- &rise, &set );
- civ = civil_twilight ( year, month, day, lon, lat,
- &civ_start, &civ_end );
- naut = nautical_twilight ( year, month, day, lon, lat,
- &naut_start, &naut_end );
- astr = astronomical_twilight( year, month, day, lon, lat,
- &astr_start, &astr_end );
-
- printf( "Sun at south %5.2fh UT\n", (rise+set)/2.0 );
-
- switch( rs )
- {
- case 0:
- printf( "Sun rises %5.2fh UT, sets %5.2fh UT\n",
- rise, set );
- break;
- case +1:
- printf( "Sun above horizon\n" );
- break;
- case -1:
- printf( "Sun below horizon\n" );
- break;
- }
-
- switch( civ )
- {
- case 0:
- printf( "Civil twilight starts %5.2fh, "
- "ends %5.2fh UT\n", civ_start, civ_end );
- break;
- case +1:
- printf( "Never darker than civil twilight\n" );
- break;
- case -1:
- printf( "Never as bright as civil twilight\n" );
- break;
- }
-
- switch( naut )
- {
- case 0:
- printf( "Nautical twilight starts %5.2fh, "
- "ends %5.2fh UT\n", naut_start, naut_end );
- break;
- case +1:
- printf( "Never darker than nautical twilight\n" );
- break;
- case -1:
- printf( "Never as bright as nautical twilight\n" );
- break;
- }
-
- switch( astr )
- {
- case 0:
- printf( "Astronomical twilight starts %5.2fh, "
- "ends %5.2fh UT\n", astr_start, astr_end );
- break;
- case +1:
- printf( "Never darker than astronomical twilight\n" );
- break;
- case -1:
- printf( "Never as bright as astronomical twilight\n" );
- break;
- }
-
- }
- return 0;
- }
-
-
- /* The "workhorse" function for sun rise/set times */
-
- int __sunriset__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb, double *trise, double *tset )
- /***************************************************************************/
- /* Note: year,month,date = calendar date, 1801-2099 only. */
- /* Eastern longitude positive, Western longitude negative */
- /* Northern latitude positive, Southern latitude negative */
- /* The longitude value IS critical in this function! */
- /* altit = the altitude which the Sun should cross */
- /* Set to -35/60 degrees for rise/set, -6 degrees */
- /* for civil, -12 degrees for nautical and -18 */
- /* degrees for astronomical twilight. */
- /* upper_limb: non-zero -> upper limb, zero -> center */
- /* Set to non-zero (e.g. 1) when computing rise/set */
- /* times, and to zero when computing start/end of */
- /* twilight. */
- /* *rise = where to store the rise time */
- /* *set = where to store the set time */
- /* Both times are relative to the specified altitude, */
- /* and thus this function can be used to comupte */
- /* various twilight times, as well as rise/set times */
- /* Return value: 0 = sun rises/sets this day, times stored at */
- /* *trise and *tset. */
- /* +1 = sun above the specified "horizon" 24 hours. */
- /* *trise set to time when the sun is at south, */
- /* minus 12 hours while *tset is set to the south */
- /* time plus 12 hours. "Day" length = 24 hours */
- /* -1 = sun is below the specified "horizon" 24 hours */
- /* "Day" length = 0 hours, *trise and *tset are */
- /* both set to the time when the sun is at south. */
- /* */
- /**********************************************************************/
- {
- double d, /* Days since 2000 Jan 0.0 (negative before) */
- sr, /* Solar distance, astronomical units */
- sRA, /* Sun's Right Ascension */
- sdec, /* Sun's declination */
- sradius, /* Sun's apparent radius */
- t, /* Diurnal arc */
- tsouth, /* Time when Sun is at south */
- sidtime; /* Local sidereal time */
-
- int rc = 0; /* Return cde from function - usually 0 */
-
- /* Compute d of 12h local mean solar time */
- d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
-
- /* Compute local sideral time of this moment */
- sidtime = revolution( GMST0(d) + 180.0 + lon );
-
- /* Compute Sun's RA + Decl at this moment */
- sun_RA_dec( d, &sRA, &sdec, &sr );
-
- /* Compute time when Sun is at south - in hours UT */
- tsouth = 12.0 - rev180(sidtime - sRA)/15.0;
-
- /* Compute the Sun's apparent radius, degrees */
- sradius = 0.2666 / sr;
-
- /* Do correction to upper limb, if necessary */
- if ( upper_limb )
- altit -= sradius;
-
- /* Compute the diurnal arc that the Sun traverses to reach */
- /* the specified altitide altit: */
- {
- double cost;
- cost = ( sind(altit) - sind(lat) * sind(sdec) ) /
- ( cosd(lat) * cosd(sdec) );
- if ( cost >= 1.0 )
- rc = -1, t = 0.0; /* Sun always below altit */
- else if ( cost <= -1.0 )
- rc = +1, t = 12.0; /* Sun always above altit */
- else
- t = acosd(cost)/15.0; /* The diurnal arc, hours */
- }
-
- /* Store rise and set times - in hours UT */
- *trise = tsouth - t;
- *tset = tsouth + t;
-
- return rc;
- } /* __sunriset__ */
-
-
-
- /* The "workhorse" function */
-
-
- double __daylen__( int year, int month, int day, double lon, double lat,
- double altit, int upper_limb )
- /**********************************************************************/
- /* Note: year,month,date = calendar date, 1801-2099 only. */
- /* Eastern longitude positive, Western longitude negative */
- /* Northern latitude positive, Southern latitude negative */
- /* The longitude value is not critical. Set it to the correct */
- /* longitude if you're picky, otherwise set to to, say, 0.0 */
- /* The latitude however IS critical - be sure to get it correct */
- /* altit = the altitude which the Sun should cross */
- /* Set to -35/60 degrees for rise/set, -6 degrees */
- /* for civil, -12 degrees for nautical and -18 */
- /* degrees for astronomical twilight. */
- /* upper_limb: non-zero -> upper limb, zero -> center */
- /* Set to non-zero (e.g. 1) when computing day length */
- /* and to zero when computing day+twilight length. */
- /**********************************************************************/
- {
- double d, /* Days since 2000 Jan 0.0 (negative before) */
- obl_ecl, /* Obliquity (inclination) of Earth's axis */
- sr, /* Solar distance, astronomical units */
- slon, /* True solar longitude */
- sin_sdecl, /* Sine of Sun's declination */
- cos_sdecl, /* Cosine of Sun's declination */
- sradius, /* Sun's apparent radius */
- t; /* Diurnal arc */
-
- /* Compute d of 12h local mean solar time */
- d = days_since_2000_Jan_0(year,month,day) + 0.5 - lon/360.0;
-
- /* Compute obliquity of ecliptic (inclination of Earth's axis) */
- obl_ecl = 23.4393 - 3.563E-7 * d;
-
- /* Compute Sun's position */
- sunpos( d, &slon, &sr );
-
- /* Compute sine and cosine of Sun's declination */
- sin_sdecl = sind(obl_ecl) * sind(slon);
- cos_sdecl = sqrt( 1.0 - sin_sdecl * sin_sdecl );
-
- /* Compute the Sun's apparent radius, degrees */
- sradius = 0.2666 / sr;
-
- /* Do correction to upper limb, if necessary */
- if ( upper_limb )
- altit -= sradius;
-
- /* Compute the diurnal arc that the Sun traverses to reach */
- /* the specified altitide altit: */
- {
- double cost;
- cost = ( sind(altit) - sind(lat) * sin_sdecl ) /
- ( cosd(lat) * cos_sdecl );
- if ( cost >= 1.0 )
- t = 0.0; /* Sun always below altit */
- else if ( cost <= -1.0 )
- t = 24.0; /* Sun always above altit */
- else t = (2.0/15.0) * acosd(cost); /* The diurnal arc, hours */
- }
- return t;
- } /* __daylen__ */
-
-
- /* This function computes the Sun's position at any instant */
-
- void sunpos( double d, double *lon, double *r )
- /******************************************************/
- /* Computes the Sun's ecliptic longitude and distance */
- /* at an instant given in d, number of days since */
- /* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
- /* computed, since it's always very near 0. */
- /******************************************************/
- {
- double M, /* Mean anomaly of the Sun */
- w, /* Mean longitude of perihelion */
- /* Note: Sun's mean longitude = M + w */
- e, /* Eccentricity of Earth's orbit */
- E, /* Eccentric anomaly */
- x, y, /* x, y coordinates in orbit */
- v; /* True anomaly */
-
- /* Compute mean elements */
- M = revolution( 356.0470 + 0.9856002585 * d );
- w = 282.9404 + 4.70935E-5 * d;
- e = 0.016709 - 1.151E-9 * d;
-
- /* Compute true longitude and radius vector */
- E = M + e * RADEG * sind(M) * ( 1.0 + e * cosd(M) );
- x = cosd(E) - e;
- y = sqrt( 1.0 - e*e ) * sind(E);
- *r = sqrt( x*x + y*y ); /* Solar distance */
- v = atan2d( y, x ); /* True anomaly */
- *lon = v + w; /* True solar longitude */
- if ( *lon >= 360.0 )
- *lon -= 360.0; /* Make it 0..360 degrees */
- }
-
- void sun_RA_dec( double d, double *RA, double *dec, double *r )
- {
- double lon, obl_ecl, x, y, z;
-
- /* Compute Sun's ecliptical coordinates */
- sunpos( d, &lon, r );
-
- /* Compute ecliptic rectangular coordinates (z=0) */
- x = *r * cosd(lon);
- y = *r * sind(lon);
-
- /* Compute obliquity of ecliptic (inclination of Earth's axis) */
- obl_ecl = 23.4393 - 3.563E-7 * d;
-
- /* Convert to equatorial rectangular coordinates - x is uchanged */
- z = y * sind(obl_ecl);
- y = y * cosd(obl_ecl);
-
- /* Convert to spherical coordinates */
- *RA = atan2d( y, x );
- *dec = atan2d( z, sqrt(x*x + y*y) );
-
- } /* sun_RA_dec */
-
-
- /******************************************************************/
- /* This function reduces any angle to within the first revolution */
- /* by subtracting or adding even multiples of 360.0 until the */
- /* result is >= 0.0 and < 360.0 */
- /******************************************************************/
-
- #define INV360 ( 1.0 / 360.0 )
-
- double revolution( double x )
- /*****************************************/
- /* Reduce angle to within 0..360 degrees */
- /*****************************************/
- {
- return( x - 360.0 * floor( x * INV360 ) );
- } /* revolution */
-
- double rev180( double x )
- /*********************************************/
- /* Reduce angle to within +180..+180 degrees */
- /*********************************************/
- {
- return( x - 360.0 * floor( x * INV360 + 0.5 ) );
- } /* revolution */
-
-
- /*******************************************************************/
- /* This function computes GMST0, the Greenwhich Mean Sidereal Time */
- /* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
- /* 0h UT). GMST is then the sidereal time at Greenwich at any */
- /* time of the day. I've generelized GMST0 as well, and define it */
- /* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
- /* other times than 0h UT as well. While this sounds somewhat */
- /* contradictory, it is very practical: instead of computing */
- /* GMST like: */
- /* */
- /* GMST = (GMST0) + UT * (366.2422/365.2422) */
- /* */
- /* where (GMST0) is the GMST last time UT was 0 hours, one simply */
- /* computes: */
- /* */
- /* GMST = GMST0 + UT */
- /* */
- /* where GMST0 is the GMST "at 0h UT" but at the current moment! */
- /* Defined in this way, GMST0 will increase with about 4 min a */
- /* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
- /* is equal to the Sun's mean longitude plus/minus 180 degrees! */
- /* (if we neglect aberration, which amounts to 20 seconds of arc */
- /* or 1.33 seconds of time) */
- /* */
- /*******************************************************************/
-
- double GMST0( double d )
- {
- double sidtim0;
- /* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
- /* L = M + w, as defined in sunpos(). Since I'm too lazy to */
- /* add these numbers, I'll let the C compiler do it for me. */
- /* Any decent C compiler will add the constants at compile */
- /* time, imposing no runtime or code overhead. */
- sidtim0 = revolution( ( 180.0 + 356.0470 + 282.9404 ) +
- ( 0.9856002585 + 4.70935E-5 ) * d );
- return sidtim0;
- } /* GMST0 */
-